Climate change alters reproductive isolation and potential gene flow in an annual plant
نویسندگان
چکیده
Climate change will likely cause evolution due not only to selection but also to changes in reproductive isolation within and among populations. We examined the effects of a natural drought on the timing of flowering in two populations of Brassica rapa and the consequences for predicted reproductive isolation and potential gene flow. Seeds were collected before and after a 5-year drought in southern California from two populations varying in soil moisture. Lines derived from these seeds were raised in the greenhouse under wet and drought conditions. We found that the natural drought caused changes in reproductive timing and that the changes were greater for plants from the wet than from the dry site. This differential shift caused the populations to become more phenological similar, which should lead to less reproductive isolation and increased gene flow. We estimated a high level of assortative mating by flowering time, which potentially contributed to the rapid evolution of phenological traits following the drought. Estimates of assortative mating were higher for the wet site population, and assortative mating was reduced following the drought. This study shows that climate change can potentially alter gene flow and reproductive isolation within and among populations, strongly influencing evolution.
منابع مشابه
The effect of climate change on flow regime using two meteorological and hydrological indices
An important and fundamental issue in Iran is to utilize water and to avoid wasting it. Therefore, climate change can be considered as an effective factor on water resources. The most tangible climate change phenomenon is drought which is much important to be identified. In this study, the effect of climate changes on flow rate in Bashar River, Shahmokhtar station of Yasouj city was evaluated u...
متن کاملA flood risk projection for Soleimantangeh Dam against future climate change
A sensitivity analysis of the flood safety of Solaimantangeh dam using a regional climate change simulation is presented. Based on the output of the CCSM (Community Climate Change System Model) general circulation model, the NIRCM (North of Iran Regional Climate Model) computes regional scale output with 50 km spatial resolution and 21 vertical layers. Using the SRES (Special Report Emission Sc...
متن کاملDifferential gene expression in seasonal sympatry: mechanisms involved in diverging life histories.
In an era of climate change, understanding the genetic and physiological mechanisms underlying flexibility in phenology and life history has gained greater importance. These mechanisms can be elucidated by comparing closely related populations that differ in key behavioural and physiological traits such as migration and timing of reproduction. We compared gene expression in two recently diverge...
متن کاملمدلسازی اثر تغییر اقلیم بر انتشار دیاکسیدکربن خاک در مراتع خشک (جنوب ایران)
Introduction: Carbon stored in soils particularly in arid rangelands soils is the most significant carbon sink in terrestrial ecosystems. In arid rangelands, Soils have special places in both carbon sequestration and mitigate global warming. Therefore, any small change in the soil organic carbon (SOC) leads to a significant impact on the CO2 concentration in the atmosphere. Studies have shown t...
متن کاملPopulation dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change
Climate change plays an important role in the transition of ecosystems. Stratigraphic investigations have suggested that the Asian interior experienced frequent transitions between grassland and desert ecosystems as a consequence of global climate change. Using maternally and bi-parentally inherited markers, we investigated the population dynamics of Agriophyllum squarrosum (Chenopodiaceae), an...
متن کامل